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Abstract

We present a task-aware approach to synthetic data gen-

eration. Our framework employs a trainable synthesizer

network that is optimized to produce meaningful training

samples by assessing the strengths and weaknesses of a

‘target’ network. The synthesizer and target networks are

trained in an adversarial manner wherein each network is

updated with a goal to outdo the other. Additionally, we

ensure the synthesizer generates realistic data by pairing it

with a discriminator trained on real-world images. Further,

to make the target classifier invariant to blending artefacts,

we introduce these artefacts to background regions of the

training images so the target does not over-fit to them.

We demonstrate the efficacy of our approach by apply-

ing it to different target networks including a classifica-

tion network on AffNIST, and two object detection networks

(SSD, Faster-RCNN) on different datasets. On the AffNIST

benchmark, our approach is able to surpass the baseline re-

sults with just half the training examples. On the VOC per-

son detection benchmark, we show improvements of up to

2.7% as a result of our data augmentation. Similarly on the

GMU detection benchmark, we report a performance boost

of 3.5% in mAP over the baseline method, outperforming

the previous state of the art approaches by up to 7.5% on

specific categories.

1. Introduction

Synthetic data generation is now increasingly utilized to

overcome the burden of creating large supervised datasets

for training deep neural networks. A broad range of

data synthesis approaches have been proposed in literature,

ranging from photo-realistic image rendering [22, 35, 48]

and learning-based image synthesis [36, 40, 46] to meth-

ods for data augmentation that automate the process for

generating new example images from an existing training

⋆Equal Contribution
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baseline ours baseline ours
Figure 1: Comparison of object detection results using SSD.

Baseline: trained on VOC data, Ours: trained on VOC and

synthetic data generated using our approach. Green and red

bounding boxes denote correct and missed detections re-

spectively. SSD fine-tuned with our synthetic data shows

improved performance on small, occluded and truncated

person instances.

set [9, 14, 15, 33]. Traditional approaches to data augmen-

tation have exploited image transformations that preserve

class labels [3, 46], while recent works [15, 33] use a more

general set of image transformations, including even com-

positing images.

For the task of object detection, recent works have ex-

plored a compositing-based approach to data augmentation

in which additional training images are generated by pasting

cropped foreground objects on new backgrounds [6, 7, 10].

The compositing approach, which is the basis for this work,

has two main advantages in comparison to image synthesis:

1) the domain gap between the original and augmented im-

age examples tends to be minimal (resulting primarily from

blending artefacts) and 2) the method is broadly-applicable,

as it can be applied to any image dataset with object anno-

tations.

A limitation of prior approaches is that the process that
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Figure 2: Our pipeline consists of three components: a synthesizer S , the target network T , and a natural image discriminator

D. S pastes an optimally transformed foreground into a background image to generate a synthetic composite image that can

‘fool’ T and D. T is updated using the synthesized image to improve its accuracy. D provides feedback to S to improve

realism of the synthetic image. T and D are updated with the synthesized data, in lock-step with S .

generates synthetic data is decoupled from the process of

training the target classifier. As a consequence, the data

augmentation process may produce many examples which

are of little value in improving performance of the target

network. We posit that a synthetic data generation approach

must generate data have three important characteristics. It

must be a) efficient: generate fewer and meaningful data

samples, b) task-aware: generate hard examples that help

improve target network performance, and c) realistic: gen-

erate realistic examples that help minimize domain gaps and

improve generalization.

We achieve these goals by developing a novel approach

to data synthesis. We set up a 3-way competition among the

synthesizer, target and discriminator networks. The synthe-

sizer is tasked with generating composite images by com-

bining a given background with an optimally transformed

foreground, such that it can fool the target network as shown

in Figure 2. The goal of the target network is to correctly

classify/detect all instances of foreground object in the com-

posite images. The synthesizer and target networks are up-

dated iteratively, in a lock-step. We additionally introduce

a real image discriminator to ensure the composite images

generated by the synthesizer conform to the real image dis-

tribution. Enforcing realism prevents the model from gener-

ating artificial examples which are unlikely to occur in real

images, thereby improving the generalization of the target

network.

A key challenge with all composition-based methods is

the sensitivity of trained models to blending artefacts. The

target and discriminator networks can easily learn to latch

on to the blending artefacts, thereby rendering the data gen-

eration process ineffective. To address these issues with

blending, Dwibedi et al. [7] employed 5 different blend-

ing methods so that the target network does not over-fit to a

particular blending artefact. We propose an alternate solu-

tion to this problem by synthesizing examples that contain

similar blending artefacts in the background. The artefacts

are generated by pasting foreground shaped cutouts in the

background images. This makes the target network insen-

sitive to any blending artefacts around foreground objects,

since the same artefacts are present in the background im-

ages as well.

We apply our synthesis pipeline to demonstrate improve-

ments on tasks including digit classification on the AffNIST

dataset [45], object localization using SSD [29] on Pascal

VOC [8], and instance detection using Faster RCNN [34]

on GMU Kitchen [11] dataset. We demonstrate that our

approach is a) efficient: we achieve similar performance

to baseline classifiers using less than 50% data (Sec. 4.1),

b) task-aware: networks trained on our data achieve up

to 2.7% improvement for person detection (Sec. 4.2) and

3.5% increase in mAP over all classes on the GMU kitchen

dataset over baseline (Sec. 4.3). We also show that our ap-

proach produces >2X hard positives compared to state-of-

the-art [6, 7] for person detection. Our paper makes the

following contributions:

• We present a novel image synthesizer network that

learns to create composites specifically to fool a tar-

get network. We show that the synthesizer is effective

at producing hard examples to improve the target net-

work.

• We propose a strategy to make the target network in-

variant to artefacts in the synthesized images, by gen-

erating additional hallucinated artefacts in the back-

ground images.

• We demonstrate applicability of our framework to im-

age classification, object detection, and instance detec-

tion.
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Figure 3: Using a discriminator improves the realism of

generated images. (Top) Composite images generated with-

out discriminator in the loop. (Bottom) Composite images

generate with discriminator.

2. Related Work

To the best of our knowledge, ours is the first approach

to generate synthetic data by compositing images in a task-

aware fashion. Prior work on synthetic data generation can

be organized into three groups: 1) Image composition, 2)

Adversarial generation, and 3) Rendering.

Image Composition: Our work is inspired by recent cut

and paste approaches [6, 7, 10] to synthesize positive ex-

amples for object detection tasks. The advantage of these

approaches comes from generating novel and diverse jux-

tapositions of foregrounds and backgrounds that can sub-

stantially increase the available training data. The starting

point for our work is the approach of Dwibedi et al. [7], who

were first to demonstrate empirical boosts in performance

through the cut and paste procedure. Their approach uses

random sampling to decide the placement of foreground

patches on background images. However, it can produce

unrealistic compositions which limits generalization perfor-

mance as shown by [6]. To help with generalization, prior

works [6, 10] exploited contextual cues [4, 30, 31] to guide

the placement of foreground patches and improve the real-

ism of the generated examples. Our data generator network

implicitly encodes contextual cues which is used to gener-

ate realistic positive examples, guided by the discriminator.

We therefore avoid the need to construct explicit models of

context [4, 6]. Other works have used image compositing

to improve image synthesis [44], multi-target tracking [20],

and pose tracking [37]. However, unlike our approach, none

of these prior works optimize for the target network while

generating synthetic data.

Adversarial learning: Adversarial learning has

emerged as a powerful framework for tasks such as image

synthesis, generative sampling, synthetic data genera-

tion etc. [2, 5, 26, 43] We employ an adversarial learning

paradigm to train our synthesizer, target, and discriminator

networks. Previous works such as A-Fast-RCNN [49] and

the adversarial spatial transformer (ST-GAN) [26] have

also employed adversarial learning for data generation. The

A-Fast-RCNN method uses adversarial spatial dropout to

simulate occlusions and an adversarial spatial transformer

network to simulate object deformations, but does not

generate new training samples. The ST-GAN approach

uses a generative model to synthesize realistic composite

images, but does not optimize for a target network.

Rendering: Recent works [1, 16, 35, 40, 47, 50] have

used simulation engines to render synthetic images to aug-

ment training data. Such approaches allow fine-grained

control over the scale, pose, and spatial positions of fore-

ground objects, thereby alleviating the need for manual an-

notations. A key problem of rendering based approaches

is the domain difference between synthetic and real data.

Typically, domain adaptation algorithms (e.g. [40]) are nec-

essary to bridge this gap. However, we avoid this problem

by compositing images only using real data.

Hard example mining: Previous works have shown

the importance of hard examples for training robust mod-

els [19, 27, 38, 51, 52, 29]. However, most of these ap-

proaches mine existing training data to identify hard exam-

ples and are bound by limitations of the training set. Unlike

our approach, these methods do not generate new examples.

Recently, [18, 53] proposed data augmentation for generat-

ing transformations that yields additional pseudo-negative

training examples. In contrast, we generate hard positive

examples.

3. Task-Aware Data Synthesis

Our approach for generating hard training examples

through image composition requires as input a background

image, b, and a segmented foreground object mask, m, from

the object classes of interest. The learning problem is for-

mulated as a 3-way competition among the synthesizer S ,

the target T , and the discriminator D. We optimize S to

produce composite images that can fool both T and D. T is

updated with the goal to optimize its target loss function,

while D continues to improve its classification accuracy.

The resulting synthetic images are both realistic and consti-

tute hard examples for T . The following sections describe

our data synthesis pipeline and end-to-end training process

in more detail.

3.1. Synthesizer Network

The synthesizer operates on the inputs b and m and out-

puts a transformation function, A. This transformation is

applied to the foreground mask to produce a composite syn-

thetic image, f = b ⊕ A(m), where ⊕ denotes the alpha-

blending [26] operation. In this work, we restrict A to the

set of 2D affine transformations (parameterized by a 6− di-
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Figure 4: Data generated by our approach over multiple

iterations for the AffNIST experiment (Section 4.1). As

training progresses (top to bottom) the synthesized exam-

ples become more complex, from single modes of failure of

the target network to multiple modes at later stages.

mensional feature vector), but the approach can trivially be

extended to other classes of image transformations. b, f, A

are then fed to a Spatial Transformer module [17] which

produces the composite image f (Figure 2). The composite

image is fed to the discriminator and target networks with

the goal of fooling both of them. The synthesizer is trained

in lockstep with the target and discriminator as described in

the following sections.

Blending Artefacts: In order to paste foreground re-

gions into backgrounds, we use the standard alpha-blending

method described in [17]. One practical challenge, as dis-

cussed in [7], is that the target model can learn to exploit

any artefacts introduced by the blending function, as these

will always be associated with positive examples, thereby

harming the generalization of the classifier. Multiple blend-

ing strategies are used in [7] to discourage the target model

from exploiting the blending artefacts. However, a target

model with sufficient capacity could still manage to over-

fit on all of the different blending functions that were used.

Moreover, it is challenging to generate a large number of

candidate blending functions due to the need to ensure dif-

ferentiability in end-to-end learning.

We propose a simple and effective strategy to address

this problem. We explicitly introduce blending artefacts

into the background regions of synthesized images (see

Fig. 5). To implement this strategy, we (i) randomly choose

a foreground mask from our training set, (ii) copy back-

ground region shaped like this mask from one image, and

(iii) paste it onto the background region in another image

using the same blending function used by S . As a con-

sequence of this process, the presence of a composited re-

gion in an image no longer has any discriminative value, as

the region could consist of either foreground or background

pixels. This simple strategy makes both the discriminator

and the target model invariant to any blending artefacts.

Figure 5: Examples of blending artefacts pasted into back-

ground regions of training images in order to remove any

discriminative cues associated with compositing. A random

foreground-shaped cut-out from a different background im-

age is pasted on the background regions of the given image.

Images from COCO (top row) and VOC (bottom row) are

shown.

3.2. Target Network

The target model is a neural network trained for specific

objectives such as image classification, object detection, se-

mantic segmentation, regression, etc. Typically, we first

train the target T with a labeled dataset to obtain a base-

line level of performance. This pre-trained baseline model

T is then fine-tuned in lockstep with S and D. Our synthetic

data generation framework is applicable to a wide range of

target networks. Here we derive the loss for the two com-

mon cases of image classification and object detection.

Image Classification: For the task of image classification,

the target loss function LT is the standard cross-entropy

loss over the training dataset.

Object Detection: For detection frameworks such as

SSD [29] and faster-RCNN [34], for each bounding-box

proposal, the target network outputs (a) probability distribu-

tion p = (p0, · · · , pL) over the L+ 1 classes in the dataset

(including background), (b) bounding-box regression off-

sets r ∈ R
4. While SSD uses fixed anchor-boxes, faster-

RCNN uses CNN based proposals for bounding boxes. The

ground truth class labels and bounding box offsets for each

proposal are denoted by c and v, respectively. Anchor boxes

with an Intersection-over-Union (IoU) overlap greater than

0.5 with the ground-truth bounding box are labeled with the

class of the bounding box, and the rest are assigned to the

background class. The object detector target T is trained to

optimize the following loss function:

LT (p, c, r, v) = − log(pc)
︸ ︷︷ ︸

classification objective

+λ[c > 0]Lloc(r, v)
︸ ︷︷ ︸

localization objective

(1)
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Figure 6: Synthesizer Architecture

where, Lloc is the smooth L1 loss function defined in [12].

The Iverson bracket indicator function [c > 0] evaluates to 1
for c > 0, i.e. for non-background classes and 0 otherwise.

In other words, only the non-background anchor boxes con-

tribute to the localization objective.

3.3. Natural Image Discriminator

An unconstrained cut-paste approach to data augmenta-

tion can produce non-realistic composite images (see for

example Fig. 3). Synthetic data generated in such a way

can still potentially improve the target network as shown

by Dwibedi et al. [7]. However, as others [4, 30, 31] have

shown, generating contextually salient and realistic syn-

thetic data can help the target network to learn more effi-

ciently and generalize more effectively to real world tasks.

Instead of learning specific context and affordance mod-

els, as employed in aforementioned works, we adopt an ad-

versarial training approach and feed the output of the syn-

thesizer to a discriminator network as negative examples.

The discriminator also receives positive examples in the

form of real-world images. It acts as a binary classifier that

differentiates between real images r and composite images

f . For an image I , the discriminator outputs D(I), i.e. the

probability of I being a real image. D is trained to maxi-

mize the following objective:

LD = Er log(D(r)) + Ef log(1−D(f)). (2)

As illustrated in Figure 3, the discriminator helps the

synthesizer to produce more natural looking images.

3.4. Training Details

The three networks, S , T , and D, are trained according

to the following objective function:

LS,T ,D = max
S

min
T

LT +min
S

max
D

LD (3)

For a given training batch, parameters of S are updated

while keeping parameters of T and D fixed. Similarly, pa-

rameters of T and D are updated by keeping parameters of

S fixed. S can be seen as an adversary to both T and D.

Synthesizer Architecture. Our synthesizer network (Fig-

ure 6) consists of (i) a shared low-level feature extraction

backbone that performs identical feature extraction on

foreground masks m and background images b, (ii) and

parallel branches for mid-level feature extraction on m, b,

and (iii) a fully-connected regression network that takes

as input the concatenation of mid-level features of m, b

and outputs a 6−dimensional feature vector representing

the affine transformation parameters. For the AffNIST

experiments, we use a 2− layer network as the backbone.

For experiments on Pascal VOC and GMU datasets, we

use the VGG-16 [41] network up to Conv-5. The mid-level

feature branches each consist of 2 bottlenecks, with one

convolutional layer, followed by ReLU and BatchNorm

layers. The regression network consists of 2 convolutional

and 2 fully connected layers.

Synthesizer hyper parameters. We use Adam [21] opti-

mizer with a learning rate of 1e− 3 for experiments on the

AffNIST dataset and 1e − 4 for all other experiments. We

set the weight decay to 0.0005 in all of our results.

Target fine-tuning hyper parameters. For the AffNIST

benchmark, the target classifier is finetuned using the SGD

optimizer with a learning rate of 1e − 2, a momentum of

0.9 and weight decay of 0.0005. For person detection on

VOC, the SSD is finetuned using the Adam optimizer with

a learning rate of 1e − 5, and weight decay of 0.0005. For

experiments on the GMU dataset, the faster-RCNN model

is finetuned using the SGD optimizer with a learning rate of

1e− 3, weight decay of 0.0001 and momentum of 0.9.

4. Experiments & Results

We now present qualitative and quantitative results to

demonstrate the efficacy of our data synthesis approach.

4.1. Experiments on AffNIST Data

We show the efficiency of data generated using our ap-

proach on AffNIST [45] hand-written character dataset. It

is generated by transforming MNIST [24] digits by ran-

domly sampled affine transformations. For generating syn-

thetic images with our framework, we apply affine transfor-

mations on MNIST digits and paste them onto black back-

ground images.

Target Architecture: The target classification model is a

neural network consisting of two 5× 5 convolutional layers

with 10 and 20 output channels, respectively. Each layer

uses ReLU activation, followed by a dropout layer. The

output features are then processed by two fully-connected

layers with output sizes of 50 and 10, respectively.

We conducted two experiments with AffNIST dataset:

Efficient Data Generation: The baseline classifier is

trained on MNIST. The AffNIST model is fine-tuned by

incrementally adding samples undergoing random affine

transformation as described in [45]. Similarly, results from

our method incrementally improves the classifier using

composite images generated by S .
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Figure 7: Performance of MNIST classifier on AffNIST

test data when progressively augmented with (i) AffNIST

training data (red), (ii) our synthetic images (green). Our

approaches achieves baseline accuracy (≈ 90%) with less

than half the data (12K samples vs 25K samples). Note

that even with 5K samples we reach an accuracy of ≈ 80%,

compared to baseline accuracy of ≈ 40%.

Table 1: Our approach achieves better classification accu-

racy compared to previous pseudo-negative data synthesis

approaches on AffNIST dataset. Numbers are reported from

the respective papers.

Method D
C

G
A

N
[3

2
]

W
G

A
N

-G
P

[1
3

]

IC
N

[1
8

]

W
IN

N
[2

5
]

IT
N

[5
3

]

Ours

Error (%) 2.78 2.76 2.97 2.56 1.52 0.99

Figure 7 shows the performance of the target model on

the AffNIST test set by progressively increasing the size

of training set. When trained on MNIST dataset alone,

the target model has a classification accuracy of 17% on

the AffNIST test set. We iteratively fine-tune the MNIST

model from this point by augmenting the training set with

500 images either from the AffNIST training set (red curve)

or from the synthetic images generated by S (green curve).

Note that our approach achieves baseline accuracy with less

than half the data. In addition, as shown in Figure 7, us-

ing only 5K examples, our method improves accuracy from

40% to 80%. Qualitative results in Figure 4 shows the

progression of examples generated by S . As training pro-

gresses, our approach generates increasingly hard examples

in a variety of modes.

Improvement in Accuracy: In Table 1, we compare our

approach with recent methods [53, 32, 13, 25, 18] that gen-

erate synthetic data to improve accuracy on AffNIST data.

For the result in Table 1, we use 55000, 5000, 10000 split

for training, validation and testing as in [53] along with the

same classifier architecture. We outperform hard negative

Target Probability

P
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n
ta

g
e 

o
f 

S
y
n
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et
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 D
at

a Hardness of Synthetic Data

easy exampleshard examples

Figure 8: Comparison of our approach with Cut-Paste-

Learn [7] and Context-Data-Augmentation [6], on the frac-

tion of hard positives generated for the person class.

Baseline [29] AP0.5 → 78.93 AP0.8 → 29.52
Column No. 1 2 3 4 5 6

Ann. Cleanup ✓ ✓ ✓ ✓ ✓

Dropout ✓ ✓ ✓ ✓

Blending ✓ ✓ ✓

1 : 1 Ratio ✓ ✓

Discriminator ✓

AP0.5 79.02 79.13 79.02 79.34 79.61 79.53
AP0.8 29.64 30.72 30.80 31.25 31.96 32.22

Table 2: Ablation Studies. We show the effect of design

choices on the performance of our approach. Significant im-

provements are observed by introducing blending artefacts

in background regions (col. 4) and maintaining a 1 : 1 ratio

between real and synthetic images (col 5) during training.

Adding a discriminator provides additional boost at AP0.8.

generation approaches [53, 25, 18] by achieving a low error

rate of 0.99%. Please find more details in the supplemen-

tary.

4.2. Experiments on Pascal VOC Data

We demonstrate improved results using our approach for

person detection on the Pascal VOC dataset [8], using the

SSD−300 network [29]. We use ground-truth person seg-

mentations and bounding box annotations to recover in-

stance masks from VOC 2007 and 2012 training and val-

idation sets as foreground. Background images were ob-

tained from the COCO dataset [28]. We do an initial clean

up of those annotations since we find that for about 10%
of the images, the annotated segmentations and bounding-

boxes do not agree. For evaluation we augment the VOC

2007 and 2012 training dataset with our synthetic images,

and report mAP for detection on VOC 2007 test set for all

experiments.
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Dataset coca

cola

coffee

mate

honey

bunches

hunt’s

sauce

mahatma

rice

nature

v1

nature

v2

palmolive

orange

pop

se-

cret

pringles

bbq

red

bull

mAP

Baseline faster-RCNN 81.9 95.3 92.0 87.3 86.5 96.8 88.9 80.5 92.3 88.9 58.6 86.3

Cut-Paste-Learn [7] 88.5 95.5 94.1 88.1 90.3 97.2 91.8 80.1 94.0 92.2 65.4 88.8

Ours 86.9 95.9 93.9 90.2 90.0 96.6 92.0 87.6 94.9 90.9 69.2 89.8

Table 3: Comparison of our approach with the baseline Faster-RCNN and [7] on the GMU Kitchen Dataset. Our approach

improves overall mAP and outperforms other approaches in most classes.

4.2.1 Comparison with Previous Cut-Paste Methods

We compare our results with the performance of the base-

line SSD network after fine-tuning it with the data gener-

ated by recent approaches from [6, 7]. We use the pub-

licly available software from authors of [6, 7] to generate

the same amount of synthetic data that we use in our exper-

iments. To ensure a fair comparison, we use the same fore-

ground masks and background images with added blending

artifacts for the generation of synthetic data. We report de-

tailed results over multiple IoU thresholds in Table 4, and

some qualitative results in Figure 1.

As observed in [6], we note that adding data generated

from [7] to training leads to a drop in performance. We also

noticed that adding data generated by [6] also leads to a drop

in SSD performance. In contrast, our method improves SSD

performance by 2.7% at AP0.8.

Quality of Synthetic Data: We develop another metric to

evaluate the quality of synthetic data for the task of person

detection. A hardness metric is defined as 1− p, where p is

the probability of the synthetic composite image containing

a person, according to the baseline SSD. We argue that if

the baseline network is easily able to detect the person in

a composite image, then it is an easy example and may not

boost the network’s performance when added to the training

set. A similar metric has been proposed by previous works

[19, 39, 49, 52] for evaluating the quality of real data.

In Figure 8, we compare the hardness of data generated

by our approach to to that of [6, 7]. The X-axis denotes the

SSD confidence and the Y-axis captures fraction of samples

generated. We generate the same amount of data with all

methods and take an average over multiple experiment runs

to produce this result. As shown in Figure 8, we generate

significantly harder examples than [6, 7]. Please find more

qualitative examples and experiments in the supplementary

material.

4.2.2 Ablation Studies

Table 2 studies the effect of various parameters on the per-

formance of an SSD network fine-tuned on our data. In

particular, we study the effect of (i) excluding noisy fore-

ground segmentation annotations during generation, (ii) us-

ing dropout in the synthesizer, (iii) adding blending artifacts

IoU Baseline [7] [6] Ours no-D Ours +D

0.5 78.93 76.65 76.81 79.61 (+0.68) 79.53 (+0.60)

0.6 69.61 66.88 66.91 70.39 (+0.78) 70.67 (+1.06)

0.7 52.97 52.12 50.21 53.71 (+0.74) 54.50 (+1.53)

0.8 29.54 28.82 28.14 31.96 (+2.44) 32.22 (+2.68)

Table 4: Results on VOC 2007 test data for person detec-

tion. Our augmentation improves the baseline over different

IoU thresholds by 2.7% at an IoU of 0.8.

in the background, (iv) fine-tuning with real and synthetic

data, and (v) adding the discriminator. Our performance

metric is mAP at an IoU threshold of 0.5. While we note

progressive improvements in our performance with each ad-

dition, we see a slight drop in performance after the addition

of the discriminator. We investigate this further in Table 4,

and note that adding the discriminator improves our perfor-

mance on all IoU thresholds higher > 0.5, allowing us to

predict bounding boxes which are much better aligned with

the ground truth boxes.

4.3. Experiments on GMU Data

Lastly, we apply our data synthesis framework to im-

prove the Faster-RCNN [34] for instance detection. We

compare our approach with baseline Faster-RCNN and the

method of [7] on the GMU Kitchen Dataset [11].

The GMU Kitchen Dataset comprises 11 classes and

has 3-fold train/test splits as reported in [7]. We use fore-

grounds from the Big Berkeley Instance Recognition (Big-

BIRD) [42] dataset and backgrounds from the UW Scenes

dataset [23].

Table 3 reports per class accuracy and mean average pre-

cision on the GMU test set. Our approach out-performs

baseline Faster-RCNN and [7] by 3.5% and 1% in mAP,

respectively. Interestingly, we improve accuracy of some

categories such as ’palmolive-orange’ by up to 7.5%.

5. Conclusion

The recent success of deep learning has been fueled by

supervised training requiring human annotations. Large

training sets are essential for improving performance under

challenging real world environments, but are difficult, ex-

pensive and time-consuming to obtain. Synthetic data gen-
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Figure 9: Qualitative results for VOC 2007 test set before and after training SSD with our synthesized data. Green and red

boxes show correct and missed detections, respectively. Note that synthetic data helps improve the SSD performance on

severely occluded and small instances.

eration offers promising new avenues to augment training

sets to improve the accuracy of deep neural networks.

In this paper, we introduced the concept of task-aware

synthetic data generation to improve the performance of a

target network. Our approach trains a synthesizer to gen-

erate efficient and useful synthetic samples, which helps to

improve the performance of the target network. The tar-

get network provides feedback to the synthesizer, to gener-

ate meaningful training samples. We proposed a novel ap-

proach to make the target model invariant to blending arte-

facts by adding similar artefacts on background regions of

training images. We showed that our approach is efficient,

requiring less number of samples as compared to random

data augmentations to reach a certain accuracy. In addition,

we show a 2.7% improvement in the state-of-art person de-

tection using SSD. Thus, we believe that we have improved

the state-of-art in synthetic data generation tailored to im-

prove deep learning techniques.

Our work opens up several avenues for future research.

Our synthesizer network outputs affine transformation pa-

rameters, but can be easily extended to output additional

learnable photometric transformations to the foreground

masks and non-linear deformations. We showed compo-

sition using a foreground and background image, but com-

positing multiple images can offer further augmentations.

While we showed augmentations in 2D using 2D cut-outs,

our work can be extended to paste rendered 3D models into

2D images. Our approach can also be extended to other tar-

get networks such as regression and segmentation networks.

Future work includes explicitly adding a diversity metric to

data synthesis to further improve its efficiency.
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