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Abstract

Computing similarities between data samples is a
fundamental step in most Pattern Recognition (PR)
tasks. Better similarity measures lead to more accurate
prediction of labels. Computing similarities between
video sequences has been a challenging problem for
the PR community for long because videos have both
spatial and temporal context which are hard to cap-
ture. We describe a novel approach that employs Par-
tial Least Squares (PLS) regression to derive a measure
of similarity between two tensors (videos). We demon-
strate the use of this tensor similarity measure along
with SVM classifiers to solve the tasks of hand gesture
recognition and action classification. We show that our
methods significantly outperform the state of the art ap-
proaches on two popular datasets: Cambridge hand
gesture dataset and UCF sports action dataset. Our
method requires no parameter tuning.

1. Introduction and Prior Work

Many pattern recognition tasks involve assigning la-
bels to unlabeled samples. Traditionally, we solve these
tasks by acquiring ground truth labels for some of the
data samples. Some measure of similarity between the
seen and unseen samples is then used to predict the la-
bels of the unseen samples. The similarity measure used
is thus a crucial component of any Pattern Recognition
problem. A lot of similarity kernels for real valued
and symbolic data such as text can be found in litera-
ture [15]. However, there are few similarity kernels for
videos (tensors). Devising good discriminative kernels
for videos is challenging because they have both spa-
tial and temporal context. In this paper, we take a step
forward in this direction.

Quantitative similarity measures between videos can
be applied to solve various pattern recognition tasks

such as hand gesture recognition and action classifica-
tion. These find applications in Human Computer Inter-
action (HCI) [10] and video surveillance [13]. Hand
gesture recognition is also widely used for sign lan-
guage interpretation [4]. Studies have been conducted
over the years to develop systems that perform these
tasks accurately.

Some of the earlier methods for hand gesture recog-
nition have used neural networks to recognize spatio-
temporal actions [16]. Others describe videos using
spatial [10] and temporal models [1]. Few methods
have also used Hidden Markov Models and its variants
[17]. More recently, graph matching approaches have
been used for gesture recognition [14]. The most no-
table recent approach to hand gesture recognition [5]
combines Canonical Correlation Analysis (CCA) with
discriminant functions and SIFT features to extract dis-
criminative pair-wise spatio temporal features (for pairs
of videos) that perform robust gesture recognition.

There has been a furore of activity in the action clas-
sification community too. Methods that use the knowl-
edge of the geometry of the tensor space [9] for action
classication factor tensors using a modified High Order
Singular Value Decomposition (HOSVD) and each fac-
torized space is recognized as a Grassmann manifold;
and classification is done on this manifold. Motivated
by this approach, [8] represents tensors (videos) as a
tangent bundle on a Grassmann manifold and canonical
distances between these tangent spaces are then used
for action classification. CCA has been extended [6]
for multidimensional data arrays to inspect joint space-
time linear relationships of two videos and acquire sim-
ilarity features of the two videos that are both flexible
and descriptive. This is achieved by representing third
order tensors (videos) as a set of 2-D matrices and us-
ing CCA on each of these matrices. This method fur-
ther uses a discriminative feature selection scheme and
a nearest neighbour classifier for action classification.

Our method is similar to [6] in the sense that we too
flatten the videos (third order tensors) to get three ma-



trices (second order tensors) per video (these three ma-
trices are referred to as the three joint shared modes of
a tensor in [6]). However, unlike [6] that uses CCA,
we use PLS regression to compute similarity between
the corresponding second order tensors of a video. Fi-
nally, we build classification kernels using these simi-
larity measures and use an SVM for classification.

2. Partial Least Squares

PLS [12] is a technique for modeling relations be-
tween sets of observed variables using latent variables.
PLS assumes that observed data is generated by pro-
cesses that use latent variables. PLS generates orthogo-
nal score vectors (latent vectors) using the existing cor-
relations between two sets of random variables while
preserving most of the variance of both sets. The key
difference between PLS and CCA is that CCA maxi-
mizes the correlation while PLS maximizes the covari-
ance between two sets of variables.

In this paper, we use PLS regression to model the
relationship between two sets of random variables. Al-
though PLS can tackle sets of random variables with
different dimensionalities, our method uses same sized
random variables. Let X and Y be two sets of observed
random variables (data). In our case, both X and Y
are matrices of size n × m where n is the number of
random variables and m is the dimensionality of each
random variable. It is to be noted that both X and Y
are preprocessed to ensure they are both zero mean ma-
trices. PLS models the relations between these two data
matrices by decomposing them into:

X = TPT + E (1)

Y = UQT + F (2)

where T, U are n × p matrices containing p extracted
latent vectors (also called scores), P and Q are m × p
matrices of the loadings while E and F are the n ×m
matrices of residuals. In PLS regression, a linear inner
relation between U and T is assumed:

U = TB + H (3)

where B is the p × p diagonal matrix of regression co-
efficients. H is the matrix of residuals. Hence, equation
(2) can be rewritten as:

Y = TBQT + (HQT + F) (4)

The sum of the regression coefficients in B serves as the
quantitative measure of similarity between sets X and
Y .

The PLS method, which is most commonly imple-
mented using the nonlinear iterative partial least squares
(NIPALS) algorithm [18], constructs a set of weight
vectors W = {w1, w2, . . . , wp} such that

[cov(ti, ui)]
2 = max

|wi|=1
[cov(Xwi,Y)]2 (5)

where ti, ui are the ith column of matrices T and U re-
spectively and cov(ti, ui) is the sample covariance be-
tween latent vectors ti and ui. After the extraction of ti
and ui, the matrices X and Y are deated by subtracting
their rank-one approximations based on ti and ui. This
process is repeated until convergence.

3. PLS Similarity Kernels for Videos

3.1 Joint Shared Modes

In section 2 we described a similarity measure be-
tween two sets of random variables. However, in this
paper, our goal is to classify videos, which are third or-
der tensors. Thus, we need a way to convert the third
order tensors to matrices (which are second order ten-
sors). We achieve this by flattening the video tensor to
a matrix. To understand this, we first consider the 2-D
case: a matrix can be flattened to a 1-D vector by a sim-
ple row-wise (or column-wise) ordering of its elements.
In the same way, a third order tensor can be flattened to
a matrix in three ways, depending on which two dimen-
sions are reordered into a 1-D vector.

A third order tensor V ∈ Rx×y×t can be seen as
a three dimensional matrix with three modes (dimen-
sions): axes of space (x and y) and time (t). Assuming
that we have videos of uniform size (x × y × t), as de-
scribed above, there are three ways to flatten the video
into a matrix: by re-ordering x, y or x, t or y, t. Thus,
for any video, there are three distinct corresponding sets
of matrices or random variables. These corresponding
matrices have been referred to as the joint shared modes
of a tensor in [6]. We call these the xy, xt and yt joint
shared modes and denote them by Vxy , Vxt and Vyt

respectively. Intuitively, by using three different joint
shared modes, we are trying to encode the 3-D spatial
and temporal context into 3 sets of random variables.

3.2 PLS Kernel

The PLS Kernel κ(U,V) gives a quantitative mea-
sure of similarity between two videos U and V. As de-
scribed in section 2, the quantitative similarity between
two matrices (sets of random variables) is given by the
sum of the regression coefficients in the diagonal ma-
trix B. We denote this similarity between two matrices
P and Q by β(P,Q).



In this paper, each joint shared mode is treated as
a set of random variables and contributes to the overall
similarity between two videos. We compute the PLS re-
gression coefficients between the corresponding modes
for each pair of videos in the dataset. Since we have
three joint shared modes corresponding to a video, es-
sentially we can find three similarity values between
each pair of videos, one corresponding to each joint
shared mode. The PLS Kernel is given by:

κ(U,V) = β(Uxy,Vxy)+β(Uxt,Vxt)+β(Uyt,Vyt)

Thus, the similarity between two videos is simply the
sum of the similarities between their corresponding
joint shared modes.

3.3 Discussion

PLS regression is an extension of the multiple lin-
ear regression model on which a number of multivariate
methods such as discriminant analysis, principal com-
ponents regression, and CCA are based. Multivariate
methods impose two restrictions: (a) latent variables are
computed using the XT X and YT Y matrices; cross-
product matrices of X and Y variables are not used, and
(b) the number of prediction functions is always smaller
than the number of X and Y variables. In contrast, PLS
extracts prediction functions from the YT XXT Y ma-
trix. The number of prediction functions may be more
than the number of X and Y variables. PLS can thus be
used when the predictor variables outnumber the obser-
vations, unlike traditional multivariate methods.

4. Experiments and Results

Here we demonstrate the superiority of PLS similar-
ity kernels over state-of-the art approaches on tasks of
hand gesture recognition and activity classification.

4.1 Hand gesture recognition on Cambridge
dataset

The popular Cambridge hand gesture data set [6]
contains 900 video sequences of 9 gesture classes, de-
fined by 3 primitive hand shapes and 3 primitive mo-
tions (see Figure 1). Each class contains 100 video se-
quences; these 900 video sequences are partitioned into
five different illumination setting subsets: Set1, Set2,
Set3, Set4, Set5, each containing 180 videos. As in
[8], we reduce the size of the video frames to 20 × 20
pixels and extract the middle 32 frames for classifica-
tion. Thus, all the video sequences in the dataset were
resized to 20 × 20 × 32. The experimental protocol

Figure 1. Cambridge hand gesture dataset

followed in [8, 6, 9] was used. According to this proto-
col, Set5 was used for training while Set1, Set2, Set3,
Set4 were used for testing.

Training involved first computing the PLS Kernel
Matrix containing the similarities between every pair of
training video tensors. We used this Kernel Matrix to
train a one-vs-rest SVM classifier [3] per gesture class.
Testing involved computing the PLS Kernel Matrix con-
taining the similarities between every pair of a training
sample video and a testing sample video. This kernel
matrix was used to generate SVM scores for each test
sample. The test sample was assigned the class label of
the classifier that gave the maximum score.

The hand gesture recognition accuracies can be seen
in Table 1. We compare our method with the state-of-
the-art approaches described in [8, 9, 6, 5] (Section 1).
Our method significantly outperforms the other meth-
ods on all illumination settings.

4.2 Action classification on the UCF Sport
dataset

The UCF sport action dataset [11] contains 150
video sequences partitioned over ten human action cat-
egories like driving, kicking, walking, swinging golf
clubs (see Figure 2). Each category has a different num-
ber of videos, from 6 to 22. This dataset is challenging
because of the non-uniform backgrounds and relative
motion between the camera and subject in some actions.

As in [8], we resize all the video sequences to the
same size 32×32×64. We choose the 64 middle frames
from each video, and apply linear interpolation between
frames for videos with less than 64 frames. We use
the leave-one-out cross validation protocol just like in

Figure 2. UCF Sports Action dataset



[8, 2, 7]. The classification setup remains the same as in
our experiments on the Cambridge dataset. We trained a
one-vs-rest SVM for each action class and the test video
sequence was assigned the class label of the classifier
with the maximum score. The classification results can
be seen in Table 2. We have also compared results with
[7] and [2]. While [7] learns the most discriminative
space-time feature neighbourhoods for an activity using
local motion and appearance features, [2] computes rich
features from point trajectories, combine local descrip-
tors to combat background noise and use a novel feature
selection scheme. Here again, our method significantly
outperforms the state-of-the-art approaches.

Table 1. Hand-gesture recognition ac-
curacy (%) on the Cambridge-Gesture
Dataset

Method Set1 Set2 Set3 Set4 Total
PLS 96% 92% 96% 93% 94± 2.1%

TB [8] 93% 88% 90% 91% 91± 2.4%
PM [9] 89% 86% 89% 87% 88± 2.1%

DCCA [5] - - - - 85± 2.8%
TCCA [6] 81% 81% 78% 86% 82± 3.4%

Table 2. Leave one out cross validation on
the UCF Sports Dataset

PLS TB [8] HDN [7] OMD [2]
93.2% 88% 87.27% 86.9%

Discussion: Our PLS similarity kernel approach is
superior to the previous best [8] for these tasks. Our
method is both more intuitive (based on maximizing
covariance) and straight-forward, thus easily imple-
mentable. Compared to [6], PLS is more general (sec-
tions 2, 3.3) and the use of SVM classifiers (as opposed
to a nearest neighbour scheme) with our similarity ker-
nels boosts the classification performance.

5. Conclusion

In this paper, we devised a method that employs PLS
regression to derive a scalar similarity measure between
two sets of random variables. We extended this tech-
nique to find quantitative similarity measures between
two videos. We employed discriminative kernel matri-
ces constructed using pair-wise similarities between the
data samples to solve the tasks of hand gesture recogni-
tion and human activity classification. Our method out-
performs the state-of-the-art methods on the Cambridge
hand gesture dataset and the UCF Sports dataset. Our

model involves no parameter tuning. A further under-
standing of PLS regression could lead us to investigat-
ing other interesting properties of pairs of tensors.
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