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Abstract. In this work we address the problem of estimating 3D human pose from
a single RGB image by blending a feed-forward CNN with a graphical model that
couples the 3D positions of parts. The CNN populates a volumetric output space
that represents the possible positions of 3D human joints, and also regresses the
estimated displacements between pairs of parts. These constitute the ‘unary’ and
‘pairwise’ terms of the energy of a graphical model that resides in a 3D label space
and delivers an optimal 3D pose configuration at its output. The CNN is trained on
the 3D human pose dataset 3.6M, the graphical model is trained jointly with the
CNN in an end-to-end manner, allowing us to exploit both the discriminative power
of CNNs and the top-down information pertaining to human pose. We introduce
(a) memory efficient methods for getting accurate voxel estimates for parts by
blending quantization with regression (b) employ efficient structured prediction
algorithms for 3D pose estimation using branch-and-bound and (c) develop a
framework for qualitative and quantitative comparison of competing graphical
models. We evaluate our work on the Human 3.6M dataset, demonstrating that
exploiting the structure of the human pose in 3D yields systematic gains.

1 Introduction

Human pose estimation has made rapid progress thanks to deep learning, as witnessed
by the improvements reported on large-scale benchmarks [1,2,3,4,5,6,7]. In this work we
focus on the more challenging task of 3D human pose estimation from a single monocular
image, which can have many applications in human-computer interaction, augmented
reality, and can eventually lead to addressing generic 3D object pose estimation.

Recovering 3D information from a single 2D image is clearly ill-posed, given that
different 3D scenes can project to the same 2D image. However, exploiting task-specific
prior knowledge can increase the probability of the more plausible scenes. All leading
approaches to 3D human pose estimation, such as [8,9,10,11], rely on incorporating
prior knowledge about the structure of the 3D human body. Two-stage approaches, e.g.
[9,10,12], firstly detect joint positions in 2D and subsequently lift joints into 3D by
relying on prior knowledge about the 3D human pose. The advantage of such approaches
is that they can exploit large datasets constructed for the prediction of 2D landmarks -
the disadvantage is that errors in the 2D stage can propagate to the 3D predictions and
can often not be recovered from. Inherently 3D approaches [13,14] discretize the depth
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variable and train a CNN to score every possible combination of position and depth with
respect to the presence of a joint - one can understand that the CNN learns to use the
scale of the joint to guess its depth. This was recently shown in [13] to deliver results that
are largely superior over previous 2-stage approaches. More recent works have delivered
further improvements by fusing the 2D and 3D streams [15].

In directly regressing the pose from the input image, the aforementioned approaches
do not explicitly impose constraints that exploit the dependencies between the human
joints. In our understanding, what is missing from existing works is a method to exploit
the structure of the human pose in a natively 3D setup. Authors in [16] acknowledge
this deficiency of contemporary methods, and propose to use a stacked denoising auto-
encoder to learn these dependencies implicitly. Other approaches to combining structured
prediction with deep learning have recently been successfully pursued in 2D human
pose estimation e.g. [17,18], while current approaches to incorporating structure in
feedforward CNNs for pose estimation rely on cascading, or stacking the outputs of
CNNs in 2D [5,6], which can become prohibitive when done in 3D, due to the increased
memory and computation load. In this work we develop novel techniques that allow us to
‘explicitly’ capture the dependencies between human joints via an energy function that
consists of unary and pairwise terms, and thereby pursue this direction in the arguably
harder 3D setting.

Our contribution consists in showing that one can combine a volumetric represen-
tation with a structured model that imposes constraints between the relative positions
of parts. Rather than relying exclusively on a feed-forward architecture, we show that
one can append a structured prediction algorithm that propagates information on a graph
that represents the part positions, and still remain computationally efficient. In particular,
we train a CNN to not only populate the ‘unary’ 3D score maps for each part, but also
to provide estimates of the relative positions of parts in 3D. This coupling of the part
positions results in an optimization problem, that we treat as yet-another layer of a deep
network, and thereby add functionality to the network.

We can describe our contributions as (i) allowing for a high resolution in the esti-
mation of the pose without increasing the computation/memory budget (Sec. 2.1) (ii)
constructing the coupling term so as to make optimization tractable while working with
a high resolution in the depth coordinates (Sec. 2.2) (iii) exploiting rich connectivity,
i.e. allowing the edges in the underlying graph of the model to form loops, by using
fast approximate inference that combines Branch-and-Bound with ADMM (Sec. 2.3)
and (iv) using Deeply Supervised Network (DSN) [19] training to accelerate training,
by forcing the 2D and 3D inputs to structured prediction to reflect part of the solution,
while also leveraging on larger 2D datasets during training (Sec. 2.4).

We evaluate our approach on the Human3.6M dataset. Our results indicate that
blending local information about the 3D pose of parts with information about the 3D
displacements of parts yields systematic improvements over approaches that rely on
either of these two cues alone, while incurring a marginal computational overhead, in
the order of a fraction of a second.
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Fig. 1. We consider the task of 3D human pose estimation from a single RGB image. Our approach
involves a fully convolutional neural network that provides a ‘bottom-up’ estimate of the 3D
positions of parts and their relative displacements, and a structured prediction layer that combines
them into a coherent estimate of the pose. The whole architecture is trained end-to-end, allowing
us to optimize the CNN outputs with the respect to the subsequent pose estimation algorithm.

2 Method

We start by formulating our approach in terms of a structured prediction problem, and
then provide the details about the individual components of our proposed approach. We
represent the pose Φ in terms of the concatenation of the 3D coordinates of N individual
parts φi

Φ = {φ1, . . . , φN}. (1)

Given an image I , we score a candidate pose in terms of a graphical model that con-
siders individual properties of parts, as well as properties of some of their pairwise
combinations:

SI(Φ) =

N∑
i=1

Ui(φi) +
∑
i,j∈E

Pi,j(φi, φj), (2)

where U stands for unary and P for pairwise potentials, and E is the set of edges
used in our graphical model. The unary and pairwise terms are delivered by the CNN,
while the structured prediction layer couples the parts through the optimization of Eq. 2.
If we consider a generic cost function, this can be challenging even for simple cases, let
alone for the 3D pose space we are working with. Our main technical contributions aim
at making the construction and optimization of Eq. 2 tractable while still exploiting the
structure of the output space.

2.1 Quantized Regression for Depth Estimation

One of the main challenges in constructing a volumetric CNN is that the amount of
memory and computation scales linearly in the granularity of the depth quantization,
requiring to tradeoff accuracy for speed/memory. The root of the problem is that the
underlying quantity is continuous, but plain regression-based models may be neither



sufficiently accurate, nor expressive enough to capture the uncertainty and multimodality
of the depth value caused by depth ambiguity, or occlusion.

Instead, we follow recent successful developments in object detection [20,21], dense
correspondence estimation [22], and pose estimation [23] where a combination of
classification and regression is used to attack the image-based regression problem. We
use a first classification stage to associate a confidence value with a set of non-overlapping
depth intervals, corresponding to a coarse quantization of the depth value. If we have N
classes and a depth range of, say D units, the k-th class is associated with a quantized
depth of qk = kDN . This however may be at a very coarse depth resolution. We refine
this coarse estimate by combining it with the results af a regression layer that aims at
recovering the residual between the ground-truth depth values and their quantized depth
estimates.

As shown in Fig. 2 this strategy allows us to ‘retarget’ the voxels to 3D positions that
lie closer to the actual part positions, without requiring the exhaustive sampling of the 3D
space. In particular a voxel v lying at the k-th depth interval will become associated with
a novel 3D position of part i, pvi = kDN + ri(v), where ri(v) is the residual regressed by
our network for the i-th part type at voxel v.

The value of the associated unary terms, Ui(pvi ), is obtained in terms of the inner
product between a joint-specific weight vector, wi and a feature vector extracted from
the CNN’s output at the 2D position associated with voxel v.

Fig. 2. Unary 3D coordinates via quantized regression. To efficiently regress the unary 3D
coordinates, we use a divide and conquer strategy. We begin by quantizing the 3D space into
voxels. We estimate the score of each joint belonging to each of these voxels using a classifier.
Finally we regress a residual vector per voxel which indicates the offset between the center of the
voxel and the continuous 3D position of each joint. Left: Sigmoid function on classified voxels and
regressed residual vectors (in black) for two joints. Right: Regressed residual vectors for all joints.

2.2 Efficient Optimization with Quadratic Pairwise Terms

Having described how the unary terms are constructed in our model, we now turn to the
pairwise terms and the resulting optimization problems. The expression for the pairwise
term in Eq. 2, Pi,j(φi, φj , I) would suggest constructing a six-dimensional function.



Instead, as in the Deformable Part Model paradigm [24], we use a pairwise term that
penalizes devations from a nominal displacement µi,j :

Pi,j(φi, φj , I) = −
3∑
d=1

cd(φd,i − φd,j − µd,i,j)2, (3)

where the cd parameters allow us to calibrate the importance of the different dimensions.
These parameters are forced to be positive, while the expression in 3 corresponds to the
log-probability under an axis-aligned Gaussian model, centered at the predicted part
position. We note that as in [25,26], µi,j is image-dependent, and in our case is the output
of a sub-network which is trained end-to-end. This enables us to capture dependencies
between parts, where an estimate of their ideal displacement is combined with the local
evidence provided by their unary terms.

One important advantage of the pairwise terms is that since they encode the relative
position of parts they are often easier to model, since e.g. the distance between human
joints is much more predictable than the actual positions of the joints. As such they can
simplify the overall problem.

Another crucial advantage of the particular form of the pairwise term is that by virtue
of being in the form of a quadratic cost function, it can easily be bounded from above
and below using interval arithmetic - in particular, we rely on the 3D Branch-and-Bound
algorithm introduced recently in [27] to efficiently search over optimal combinations of
parts in 3D. A brute-force, dynamic programming-type algorithm for solving this task
would require a quadratic number of operations, since it would need to compare pairs of
points. Our implementation has a low-constant linear complexity for the construction of
per-part KD-tree data structures, and logarithmic best-case complexity for the subsequent
optimization. In practice optimization requires less than a tenth of a second on a CPU,
while further accelerations could be obtained through GPU-based implementations.

2.3 Network Connectivity: from star-shaped to loopy graphs

The Branch-and-Bound (BB) algorithm we use for efficient inference only accommodates
a star-shaped graph topology. This can be problematic if one wants to model human
pose in terms of a tree-structured graph, or introduce loops to capture more constraints.
For this we employ master-slave type approximate inference techniques that allow us
to use BB for slave problems and coordinate them through a master. In particular we
rely on the Alternating Direction Method of Multipliers (ADMM) [28,29,30] which
matches the continuous nature of the pose estimation problem [30]. The approach to
subdivide difficult problems into smaller and easier ones has before been seen in [31]. The
authors introduced Dual Decomposition to optimize MRF-type energies, outperforming
former state of the art of “tree-reweighted message passing” algorithms. Later works on
ADMM like [30] borrow from developments outlined in [28] to reach convergence in a
lower number of iterations. Loopy graphs are subdivided into easier to handle trees and
coordinated via a master problem, which turns out to be updating the dual variables.

The method we outline below uses approximate inference to obtain solutions in
ω(T logN) operations, where T is a low constant in the order of tens, N is the number
of voxels, and logN is the cost of re-solving the slave subproblems. The ω (best-case)



notation relates to the (exact) Branch-and-Bound algorithm, which also empirically
has typically this performance. Even though the ADMM-based results are now only
approximately optimal, the cost function being optimized reflects more accurately the
problem structure, which can positively affect accuracy.

We consider the case where the set of graph edges in Eq. 2 corresponds to a graph
with loops. Denoting by R ⊂ 1...K the subset of point indices belonging to more than
one star graph, our optimization problem can equivalently be rewritten as follows:

max S(Φ) =

N∑
i=1

Si(Φi) s.t. Φi(r) = u(r) ∀r ∈ R, (4)

where Si is a set of loop-free subproblems, defined so that S(Φ) =
∑N
i=1 Si(Φi) for a

common solution Φ. The consistency is enforced by the ‘master’, to whom the ‘slave’
subproblems Si deliver their solutions Φi - obtained through Branch-and-Bound. In
particular a relaxation to the constraints is updated and used to reset the problem solved
by the slaves - at each step the relaxation becomes tighter and at convergence consistency
is guaranteed. Dual Decomposition relaxes the constraints in Eq. 4 by introducing a
Lagrange Multiplier λi(r) for each agreement constraint. ADMM augments this with a
quadratic constraint violation penalty resulting in an augmented Lagrangian function:

A(Φ, u, λ) =
N∑
i=1

(Si(Φi)+
∑
r∈R
〈λi(r), Φi(r)〉)−

∑
r∈R

((

N∑
i=1

λi(r))u(r)−
ρ

2

N∑
i=1

(Φi(r)−u(r))2)

(5)
where ρ is a positive parameter that controls the intensity of the augmenting penalty.

The quadratic term ensures rapid convergence by acting like a regularizer of the solutions
found across different iterations. To maximize the augmented Lagrangian, ADMM
iteratively performs the following steps:

Φt+1
i = argmaxΦi

A(Φi, ut, λt) (6)

ut+1 = argmaxuA({Φt+1
i }, u, λ

t) (7)
λt+1
i (r) = λti(r)− ρ(Φt+1

i (r)− ut+1(r)) (8)

In words, the slaves efficiently solve their sub-problems and update the master about
Φi, then the master sets ut+1(r), and the current multipliers λt+1

i (r), and communi-
cates them back to the slaves for the next iteration. Unlike [30] who used dynamic
programming to efficiently solve the slave problems, here we combine ADMM with
the Branch-and-Bound algorithm. Interestingly, both of the additional terms contributed
by the master problem to the slave problems, λi(r)u(r), (Φi(r)− u(r))2 can be easily
bounded using interval arithmetic, allowing for a straightforward incorporation into
the original Branch-and-Bound method. With these changes we have observed similar
convergence behavior as the one reported in [30]; In typically 15-20 (sometimes even
less) ADMM iterations the slaves converge to a consistent pose estimate.



2.4 Deeply Supervised 2D- and 3D- Learning

We have observed substantial simplifications in the learning procedure by employing
Deeply Supervised Network (DSN) [19] training. In particular we use loss functions that
directly operate on the unary and pairwise terms, before these are integrated through
structured prediction. We empirically observed that this substantially accelerates and
robustifies learning, by helping the network come up with good ‘proposals’ to the
subsequent combination stage.
As discussed in Sec.2.1, the unary coordinates are obtained by adding the quantization
and regression signals. Rather than expect this result to be correctly obtained only by
back-propagation from the last layer, we also associate a classification and regression
problem with each 2D image position.
We associate every pixel with a set of discrete labels corresponding to quantized depth
values. For each joint we learn a different classification function; we consider a voxel as
being positive if the respective joint is within certain proximity to the center of the 3D
volume. We train this classifier using the cross-entropy loss. We also regress residual
vectors between voxel centers and groundtruth joints using an L1 loss which is only
active when a voxel is close enough to 3D landmarks.
For the pairwise terms, we regress vectors that point from each 3d joint to others. Similar
to the unary coordinates, we regress these quantities in a fully-convolutional manner.
The smooth L1 loss for the pairwise offsets between a specific joint and the rest of the
joints is only active on pixels within certain proximity to the specific joint.

2.5 Training with a Structured Loss Function

Having outlined our cost function and our optimization algorithm, we now turn to
parameter estimation. Our graphical model is defined in Eq. 2, and the pairwise terms are
described in Eq. 3. As outlined in the preceding sub-sections, our network generates the
unary terms Ui(pvi ), the nominal displacements µi,j and the 3D coordinates φi. In this
section we describe training of all these parameters, as well as the calibration parameters
c in Eq. 3, using a structured loss function [32,33,30] that reflects the geometric nature
of the problem we want to address. Once our loss function is defined, back-propagation
can be used to update all of the underlying network parameters.
While authors in [34] use an Intersection-over-Union (IoU) based structured loss for
the task of detection, given that in this setup we have access to continuous ground
truth values that naturally capture the underlying geometry of the problem, we opt for
simplicity and use a more straightforward structured loss function.
Given that Φ denotes the 3D coordinates for a candidate configuration of parts (Eq. 1),
and Φ̂ denotes the groundtruth 3D coordinates, we use the Mean Euclidean Distance,
∆(Φ̂, Φ) = 1

P

∑P
p=1 ‖φp − φ̂p‖2 as a loss for our learning task, penalizing the 3D

displacement of our estimated landmarks from their ground truth positions. As in standard
structured output prediction, we use this loss to induce a set of constraints in pose space:

S(Φ̂) > S(Φ) +∆(Φ̂, Φ) ∀Φ, (9)

requiring that the score of the ground truth configuration should be greater than the score
of any other configuration by a margin depending on how far the particular configuration



is from the ground truth.
Since this cannot hold in general, we introduce slack variables ξ: ξ(Φ) = max(S(Φ) +
∆(Φ̂, Φ)− S(Φ̂), 0). Thus, the slack variables represent the violations of the constraints
in Eq. 9, and our goal here is to learn the model parameters that minimize the slack
variables.
Standard training of structural SVMs [32,33,30] typically finds the most violated con-
figuration given by Φ∗ = argmaxΦ(S(Φ) +∆(Φ̂, Φ) − S(Φ̂)) and tries to reduce the
violation of this configuration by updating the model parameters appropriately via the
cutting-planes or Franke-Wolfe algorithm. In this work we use the standard stochastic
gradient algorithm to minimize these slack variables. We do so by first finding K most
violated configurations for each input sample (K is a hyper-parameter which affects the
convergence speed; we set K = 20 based on experiments on a validation set). We then
compute the sub-gradients of the model parameters with respect to each of these violated
constraints and back-propagate them through the network.

3 Experimental Evaluation

3.1 Network Architecture

In our experiments we use a fully-convolutional 151 layer ResNet, with weights ini-
tialised from a model pre-trained on MPII for 2D body pose estimation [3]. Both that
3D and 2D branches of our network are implemented as single-level convolution layers
branching from the last layer of the ResNet. The input images to the system are cropped
and rescaled to a fixed size of 320x320; the downsampling factor of our network is 16,
leading to a cube of 20x20x20 dimensions for 3D unary detection and residual regression
branches and 20x20 spatial dimensions for the 2D branches.

3.2 Dataset

We use the largest available 3D human pose dataset Human3.6M (29) to train and
evaluate our approach. The dataset consists of 3.6 million video frames of daily life
activities performed by actors whose 3D joint locations are recorded by motion capture
systems. Following the recent works in the literature, we have used frames from subjects
S1, S5, S6, S7 and S8 for training and S9 and S11 for testing. We have used frames from
all 4 cameras and all 15 actions in our training and testing in an action-agnostic manner.
We have sub-sampled the videos at 10 frames per second. Several videos that suffer from
drift of the groundtruth joints are removed from the dataset.

3.3 Joint Training with 2D Pose

Our network is initialized with ResNet parameters obtained by training for 2D joint
localization on the MPII dataset, but we observe that including samples from MPII as
training samples increases performance - apparently not doing so results in the network
forgetting about 2D joint localization. As in [35] we modify the labelled joints of the
Human3.6m dataset in order to be able to utilize the 2D data. In particular we include



a joint of “thorax” between shoulders that is connected to the “neck” and discarding
“chin” and “abdomen” joints. The resulting skeleton structure is identical to the one of
MPII. We have verified that two identical networks trained with baseline and MPII-type
label structures lead to equivalent evaluation scores, thus it is fair to compare to existing
methods. The active losses for an MPII sample are 2D detection and X and Y pairwise
offset values, while the 3D position estimates are ignored.

3.4 Results

Since our groundtruth comes in the form of projected coordinates, we can obtain the
3D pose only up-to a similarity transform. We report “reconstruction error”, which is
measured as the mean euclidean distance to the ground truth, after applying Procrustes
analysis.

Directions Discussion Eating Greeting Phoning Photo Posing Purchases

UNARY alone 49.69 49.45 47.77 50.69 54.80 57.35 43.76 44.11
center star 49.41 49.26 47.35 49.93 50.97 56.12 43.62 43.43
stick figure 49.13 49.19 47.15 49.70 50.50 55.57 43.53 43.59
extended stick figure 49.16 49.07 47.35 49.82 50.67 55.45 43.60 43.57
2-hop 48.89 48.75 47.07 49.40 49.82 55.31 43.30 43.47

Sitting Sit. Down Smoking Waiting Walk Dog Walking Walk Tog. Average

UNARY alone 65.39 95.76 53.53 46.27 51.53 41.59 49.52 53.48
center star 61.50 78.09 52.51 45.88 50.63 41.08 49.41 51.42
stick figure 60.14 79.46 51.52 45.74 50.59 40.73 49.33 51.12
extended stick figure 59.94 78.51 51.42 46.01 50.39 40.89 49.32 51.08
2-hop 60.48 78.20 51.69 45.63 50.16 40.74 49.17 50.87

Table 1. Comparison of average reconstruction errors for different graph topologies.

We experimented with a number of graph topologies and notice that performance
depends on the graph structure: center star describes the graph topology where all joints
are connected to one central root node at the human’s torso. It performs better than
“unary only”, indicating that the body center “knows” something about the other body
parts.
stick figure is a graph that directly corresponds to the human skeleton, i.e. the wrist is
connected to the elbow, the elbow is connected to the shoulder, and so on. Clearly the
shoulder knows better where the elbow has to be than the root node in the torso. This
structure clearly performs better than “center star”.
extended stick figure is an extension to “stick figure”, containing all its edges plus
additional connections between the elbows of left and right arm, left and right knee, head
to shoulders and torso to knees. This shows that additional loops boost performance,
stabilizing against outliers or false evidence.
2-hop follows the human skeleton like “stick figure” and adds connections from every
joint to its indirect (2-)neighbours in the skeleton. This connects, for example, hand
with shoulder and ankle to hips and left to right knee. “2-hop” performs best, helping to
resolve occlusions and improving accuracy.



Average error

Yasin et al. [36] 108.3
Rogez et al. [37] 88.1
Tome et al. [8] 70.7
Pavlakos et al. [13] 3 53.2

(Ours)Unary 53.48
(Ours)ADMM 50.87

Table 2. A comparison of our approach to methods that report reconstruction error in literature.

cam1 cam2 cam3 cam4 Average
S-9 55.62 51.24 56.10 55.22 54.54
S-11 51.14 42.86 47.83 41.90 45.91
Average 53.72 47.64 52.59 49.57

Table 3. Reconstruction errors for videos for specific cameras and test subjects in the Human
3.6M dataset.

Our experiments, reported in Table 1 clearly indicate that the 2-hop graph topology
outperforms all of the other structures that we experimented with. This indeed justifies
using approximate inference (ADMM), since these results require employing a loopy
graph.

In Table.2 we compare the performance of our method to existing methods. Our
results indicate that (a) our quantizatoin + regression-based unary network already
delivers excellent results, at the level of the current state of the art. (b) Structured
prediction yields an additional, quite substantial boost.

We note that there are some methods that only use a single camera or only S-11
frames as test samples and the rest of the videos for training. In order to compare our
approach to such works, we present our results per camera and per subject in Tab.3. Our
results show that we are also outperforming the very recent work of [35], who uses only
S-11 as test set and obtains 48.3, which is inferior with respect to our S-11 result(45.91),
even though we have not used S-9 for training.

Fig. 3. Examplar pose estimates by ADMM inference: Blue indicates the ground truth pose,
whereas red and green is the solution obtained from “unaries alone” and ADMM respectively.



We provide qualitative results in Fig.3, demonstrating cases where the ADMM
inference clearly increases the pose estimation performance. Figure 4 shows some
example images from the LSP dataset in the left column, augmented with the inferred
body skeleton. The other three columns illustrate the plausible 3D structure as inferred
by our approach.

Fig. 4. Monocular 3D pose estimation results on LSP dataset.

4 Conclusion

In this work we have introduced an efficient method for 3D human pose estimation
from 2D images. To this end, we augment the functionality of existing deep learning
networks by adding a final layer that optimizes an energy function with variables in
three dimensions. We have shown our method to deliver state-of-the-art 3D human pose
estimation results, and intend to explore ways of extending our method to other tasks,
such as general 3D object pose estimation. Another avenue of investigation is to further
expand our optimization approach to handle even more general pairwise potentials.
Furthermore we intend to make our optimization module software publicly available
where it can be easily adopted for other applications in the computer vision community.
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